Bueno, para ir ampliando conocimientos y aportar algo de teoría pongo mi manual sobre transistores, el cual es susceptible de ser corregido/ampliado por cualquiera que esté interesado en hacerlo.
El Transistor: Una maravilla moderna
Prólogo:
Imaginaos el mundo si no existiera el más simple de los transistores........las radios tendrían todas como mínimo el tamaño de una tostadora, los teléfonos móviles tendrían el tamaño de una lavadora y el ordenador más rápido que existe en la actualidad tendría el tamaño de ¡¡¡¡LA ISLA DE IBIZA!!!!
Los transistores fueron desarrollados como una alternativa a las válvulas de vacío. Los dos usos mayoritarios de los transistores (o ya puestos, también de las válvulas) son: amplificar señales o como interruptor electrónico de señales. Debido a su pequeño tamaño tiene otra ventaja: necesita bastante menos energía que una válvula para realizar el mismo trabajo.
Con un poco de creatividad e imaginación, se puede usar un transistor en un circuito para conmutar o amplificar tensiones. Este divertido trabajo con circuitos puede llevarte muchas veces a confusiones si estás trabajando con circuitos que llevan transistores. Los transistores son unos pequeños bichos muy complejos, así que sólo voy a tratar los tipos más comunes que nos vamos a encontrar cuando empezamos a trabajar con ellos en este mundillo del DIY, qué aspecto tienen y otras cosas que son básicas y que hay que saber.
Las características de los transistores
Las resistencias, condensadores e incluso los diodos suelen tener unas características bastante simples, peeeeeeeeeero amigo, el transistor tenía que ser más difícil. Estos cachivaches se pueden clasificar por un número de criterios tan amplio que necesitaría un subforo entero para explicarlos todos y ése no es el objetivo de este manual de componentes.......así que simplemente vamos a hablar de las características más importantes que hay que conocer que son:
a) Tensión colector-base.
b) Tensión colector-emisor.
c) Intensidad máxima de colector.
d) Disipación máxima que soporta el componente.
e) Frecuencia máxima de operación del componente.
f) Ganancia del componente (en la hoja de características se denomina como hfe).
Ninguna de esas características está escrita en el transistor -sería demasiado fácil- así que para conocer esas características hay que consultar la llamada hoja de características del fabricante del transistor indicado. Como normalmente trabajamos con proyectos que ya nos dicen el transistor que tenemos que usar no necesitamos investigar sus características, pero siempre nos viene bien saber que existen......
¡¡¡No soy sólo un número, soy un transistor con nombre y apellido!!!
Tirando por lo bajo........actualmente tenemos a nuestra disposición varios miles de transistores distintos producidos por más de dos docenas de fabricantes distintos. ¿Cómo identificarlos?
Cada transistor tiene una denominación, nombre o código único, como por ejemplo el 2N3055 o el BC547, que identifica cada transistor. Si estás haciendo un circuito que has visto en internet o en un libro (aún existen, jejejejee) bastará con que compres el que se indica en el esquema. En caso de no encontrarlo en la tienda tendrás que buscar en libros de equivalencias o por internet un transistor sustituto equivalente. Hay que tener mucho cuidado a la hora de usar un sustituto ya que aún teniendo las mismas características que el transistor sustituído el patillaje del equivalente puede ser distinto, siempre es aconsejable echarle un vistazo a la hoja de características del transistor para conocer el patillaje.
Todos los semiconductores tienen serigrafiados números y letras que especifican y describen de que tipo de dispositivo se trata. Existen varias nomenclaturas o códigos que pretenden darnos esta preciada información. De todas destacan tres: PROELECTRON (Europea) que consta de dos letras y tres cifras para los componentes utilizados en radio, televisión y audio o de tres letras y dos números para dispositivos industriales. La primera letra precisa el material del que está hecho el dispositivo y la segunda letra el tipo de componente. El resto del código, números generalmente, indica la aplicación general a la que se aplica. A continuación os pongo la nomenclatura:
La primera letra indica el material semiconductor utilizado en la construcción del dispositivo
A - Germanio
B - Silicio
C - Arseniuro de Galio
D - Antimoniuro de Indio
R - Material de otro tipo
La segunda letra indica la construcción y utilización principal del dispositivo
A - Diodo de señal (diodo detector, de conmutación a alta velocidad, mezclador).
B - Diodo de capacidad variable (varicap).
C - Transistor, para aplicación en baja frecuencia.
D - Transistor de potencia, para aplicación en baja frecuencia
E - Diodo túnel.
F - Transistor para aplicación en alta frecuencia.
L - Transistor de potencia, para aplicación en alta frecuencia
P - Dispositivo sensible a las radiaciones.
R - Dispositivo de conmutación o de control, gobernado eléctricamente y teniendo un efecto de ruptura (tiristor).
S - Transistor de aplicación en conmutación.
T - Dispositivo de potencia para conmutación o control, gobernado eléctricamente y teniendo un efecto de ruptura (tiristor).
U - Transistor de potencia para aplicación en conmutación
X - Diodo multiplicador (varactor).
Y - Diodo de potencia (rectificador, recuperador).
Z - Diodo Zener o de regulación de tensión.
La serie numérica consta:
a) De tres cifras (entre 100 a 999) para dispositivos proyectados principalmente en aparatos de aplicación doméstica (radio, TV, registradores, amplificadores).
b) Una letra (X,Y,Z), seguida de dos cifras (de 10 a 99) para los dispositivos proyectados para usos principales en aplicaciones industriales y profesionales.
En Estados Unidos se utiliza la nomenclatura de la JEDEC ( Joint Electronic Devices Engineering Council) regulado por la EIA (Electronic Industries Association), que consta de un número, una letra y un número de serie (este último sin significado técnico). El significado de los números y letras es el siguiente:
1N - Diodo o rectificador
2N - Transistor o tiristor
3N - Transistor de Efecto de Campo FET o MOSFET
Los fabricantes japoneses utilizan el código regulado por la JIS (Japanese Industrial Standards), que consta de un número, dos letras y número de serie (este último sin ningún significado técnico). El número y letras tienen el siguiente significado:
Número:
0 - Fototransistor
1 - Diodo, rectificador o varicap
2 - Transistor, tiristor
3 - Semiconductor con dos puertas.
Primera letra:
S - Semiconductor
Segunda letra:
A - Transistor PNP de A.F.
B - Transistor PNP de B.F.
C - Transistor NPN de A.F.
D - Transistor NPN de B.F.
F - Tiristor de puerta P
G - Tiristor de puerta N
J - FET de canal P
K - FET de canal N
Pastillas, cápsulas y otras especies.......
El material semiconductor que contiene un transistor es del tamaño de un grano de arena o menor (así a ojo, jejejeej). Sería complicado soldar cables en algo tan pequeño, por lo que los fabricantes lo alojan en un encapsulado plástico o metálico. Actualmente podemos encontrar -literalmente- varias docenas de tamaños y tipos de encapsulado para transistores, no voy a describirlos todos porque necesitaría otro subforo (y ya serían dos, jejjejeje), pero sí los más comunes:
- El TO-92: Este transistor pequeño es muy utilizado para la amplificación de pequeñas señales.
- El TO-18: Es un poco más grande que el encapsulado TO-92, pero es metálico. En la carcasa hay un pequeño saliente que indica que la patilla más cercana es el emisor.
- El TO-39: tiene le mismo aspecto que es TO-18, pero es mas grande. Al igual que el anterior tiene una saliente que indica la cercanía del emisor, pero también tiene la patilla del colector pegado a la carcasa, para efectos de disipación de calor.
- El TO-126: Se utiliza mucho en aplicaciones de pequeña a mediana potencia. Puede o no utilizar disipador dependiendo de la aplicación en se este utilizando. Se fija al disipador por medio de un tornillo aislado en el centro del transistor. Se debe utilizar una mica aislante o una almohadilla térmica.
- El TO-220: Este encapsulado se utiliza en aplicaciones en que se deba de disipar potencia algo menor que con el encapsulado TO-3, y al igual que el TO-126 debe utilizar una mica aislante o almohadilla térmica si va a utilizar disipador, fijado por un tornillo debidamente aislado.
- El TO-3: este encapsulado se utiliza en transistores de gran potencia. Como se puede ver en el gráfico es de gran tamaño debido a que tiene que disipar bastante calor. Está fabricado de metal y es muy normal ponerle un "disipador" para liberar la energía que este genera en calor. Este disipador no tiene un contacto directo con el cuerpo del transistor, pues este estaría conectado directamente con el colector del transistor (ver siguiente párrafo). Para evitar el contacto se pone una mica o almohadilla térmica para que sirva de aislante y a la vez de buen conductor térmico. El disipador de fija al transistor con ayuda de tornillos adecuadamente aislados que se introducen el los orificios que estos tienen. En el transistor con encapsulado TO-3 el colector esta directamente conectado al cuerpo del mismo (carcasa), pudiendo verse que sólo tiene dos pines o patillas. Estas patillas no están en el centro del transistor sino que están ligeramente a un lado.
- El TO-3P viene a ser una versión más moderna del TO-3 y se usa al igual que el anterior en transistores de gran potencia, como se ve en la figura, la diferencia con respecto al TO-220 es que la zona metálica es del mismo tamaño que el transistor y no sólo una aleta que sale del mismo. Obligatorio también el uso de disipador con este encapsulado, debidamente aislado con una mica o almohadilla térmica.
Haciendo amig.....digooooooooo conexiones
Normalmente los transistores tienen tres patillas de conexión, éstas son:
- Base
- Colector
- Emisor
Si simplificamos la explicación teórica podemos decir que al conectar la base a una tensión o corriente se activará o desactivara (según esté polarizado) el transistor.
Las patillas de emisor y colector se conectan a tensiones positivas, negativas o masa, según el circuito.
Algunos transistores incluyen una cuarta patilla, esta patilla lleva a masa el encapsulado del transistor hacia el chasis del circuito.
Tipos de transistor
En primer lugar, podemos clasificar los transistores como dispositivos NPN o PNP. esta misteriosa abreviatura se refiere al "sandwich" o unión de los materiales semiconductores en el interior del transistor.
A menos que tengas visión de rayos-X, jamás vas a distinguir a simple vista un transistor NPN de un PNP. De todas formas, en los esquemas y en las hojas de características sí que se ven las diferencias, así que no hay que preocuparse. Cuando hacemos un proyecto propio podemos usar un tipo de transistor u otro según nuestras necesidades: el tipo de fuente de alimentación que tenemos, la polaridad de la alimentación, la dirección de la señal, etc......pero hay que dejar claro que no podemos usar indistintamente a voleo uno u otro tipo.
Si en un esquema dice que usemos un PNP no podemos sustituírlo por un NPN sin esperar ver humo en alguna parte del circuito.........
Por si no había bastantes cosas que memorizar......aparte de por su tipo de unión, los transistores se pueden clasificar por cómo se creó la unión de los semiconductores en el proceso de fabricación. Los dos principales tipos que vais a encontraros son los transistores bipolares y los FET's.
Las diferencias entre uno y otro:
a) Bipolares: Son los más comunes. Se aplica una pequeña corriente de entrada en la base del transistor. Esto hace que varíe la corriente que circula entre el colector y el emisor.
b) FET's: Estos transistores también tienen tres conexiones, pero éstas se llaman: Puerta (Gate), Fuente (Source) y Drenador (Drain) en vez de base, colector y emisor. Aplicando una tensión en la puerta controlamos la corriente que circula entre la fuente y el drenador.
Hay dos tipos de FET: de canal-N (similar al NPN bipolar) y de canal-P (similar al PNP bipolar).
Técnicamente los FET se dividen en dos subtipos: MOSFET y JFET, no me voy a extender más en este manual para explicar las diferencias entre uno y otro, pero siempre viene bien saber que existen.
Un consejo: cuando tratamos con transistores FET hay que tener cuidado ya que son sensibles a las descargas de electricidad estática. Por so es conveniente que mientras no los usemos los tengamos guardados en un envoltorio antiestático y no sacarlos hasta que vayamos a usarlos.
Salu2.
El Transistor: Una maravilla moderna
Prólogo:
Imaginaos el mundo si no existiera el más simple de los transistores........las radios tendrían todas como mínimo el tamaño de una tostadora, los teléfonos móviles tendrían el tamaño de una lavadora y el ordenador más rápido que existe en la actualidad tendría el tamaño de ¡¡¡¡LA ISLA DE IBIZA!!!!
Los transistores fueron desarrollados como una alternativa a las válvulas de vacío. Los dos usos mayoritarios de los transistores (o ya puestos, también de las válvulas) son: amplificar señales o como interruptor electrónico de señales. Debido a su pequeño tamaño tiene otra ventaja: necesita bastante menos energía que una válvula para realizar el mismo trabajo.
Con un poco de creatividad e imaginación, se puede usar un transistor en un circuito para conmutar o amplificar tensiones. Este divertido trabajo con circuitos puede llevarte muchas veces a confusiones si estás trabajando con circuitos que llevan transistores. Los transistores son unos pequeños bichos muy complejos, así que sólo voy a tratar los tipos más comunes que nos vamos a encontrar cuando empezamos a trabajar con ellos en este mundillo del DIY, qué aspecto tienen y otras cosas que son básicas y que hay que saber.
Las características de los transistores
Las resistencias, condensadores e incluso los diodos suelen tener unas características bastante simples, peeeeeeeeeero amigo, el transistor tenía que ser más difícil. Estos cachivaches se pueden clasificar por un número de criterios tan amplio que necesitaría un subforo entero para explicarlos todos y ése no es el objetivo de este manual de componentes.......así que simplemente vamos a hablar de las características más importantes que hay que conocer que son:
a) Tensión colector-base.
b) Tensión colector-emisor.
c) Intensidad máxima de colector.
d) Disipación máxima que soporta el componente.
e) Frecuencia máxima de operación del componente.
f) Ganancia del componente (en la hoja de características se denomina como hfe).
Ninguna de esas características está escrita en el transistor -sería demasiado fácil- así que para conocer esas características hay que consultar la llamada hoja de características del fabricante del transistor indicado. Como normalmente trabajamos con proyectos que ya nos dicen el transistor que tenemos que usar no necesitamos investigar sus características, pero siempre nos viene bien saber que existen......
¡¡¡No soy sólo un número, soy un transistor con nombre y apellido!!!
Tirando por lo bajo........actualmente tenemos a nuestra disposición varios miles de transistores distintos producidos por más de dos docenas de fabricantes distintos. ¿Cómo identificarlos?
Cada transistor tiene una denominación, nombre o código único, como por ejemplo el 2N3055 o el BC547, que identifica cada transistor. Si estás haciendo un circuito que has visto en internet o en un libro (aún existen, jejejejee) bastará con que compres el que se indica en el esquema. En caso de no encontrarlo en la tienda tendrás que buscar en libros de equivalencias o por internet un transistor sustituto equivalente. Hay que tener mucho cuidado a la hora de usar un sustituto ya que aún teniendo las mismas características que el transistor sustituído el patillaje del equivalente puede ser distinto, siempre es aconsejable echarle un vistazo a la hoja de características del transistor para conocer el patillaje.
Todos los semiconductores tienen serigrafiados números y letras que especifican y describen de que tipo de dispositivo se trata. Existen varias nomenclaturas o códigos que pretenden darnos esta preciada información. De todas destacan tres: PROELECTRON (Europea) que consta de dos letras y tres cifras para los componentes utilizados en radio, televisión y audio o de tres letras y dos números para dispositivos industriales. La primera letra precisa el material del que está hecho el dispositivo y la segunda letra el tipo de componente. El resto del código, números generalmente, indica la aplicación general a la que se aplica. A continuación os pongo la nomenclatura:
La primera letra indica el material semiconductor utilizado en la construcción del dispositivo
A - Germanio
B - Silicio
C - Arseniuro de Galio
D - Antimoniuro de Indio
R - Material de otro tipo
La segunda letra indica la construcción y utilización principal del dispositivo
A - Diodo de señal (diodo detector, de conmutación a alta velocidad, mezclador).
B - Diodo de capacidad variable (varicap).
C - Transistor, para aplicación en baja frecuencia.
D - Transistor de potencia, para aplicación en baja frecuencia
E - Diodo túnel.
F - Transistor para aplicación en alta frecuencia.
L - Transistor de potencia, para aplicación en alta frecuencia
P - Dispositivo sensible a las radiaciones.
R - Dispositivo de conmutación o de control, gobernado eléctricamente y teniendo un efecto de ruptura (tiristor).
S - Transistor de aplicación en conmutación.
T - Dispositivo de potencia para conmutación o control, gobernado eléctricamente y teniendo un efecto de ruptura (tiristor).
U - Transistor de potencia para aplicación en conmutación
X - Diodo multiplicador (varactor).
Y - Diodo de potencia (rectificador, recuperador).
Z - Diodo Zener o de regulación de tensión.
La serie numérica consta:
a) De tres cifras (entre 100 a 999) para dispositivos proyectados principalmente en aparatos de aplicación doméstica (radio, TV, registradores, amplificadores).
b) Una letra (X,Y,Z), seguida de dos cifras (de 10 a 99) para los dispositivos proyectados para usos principales en aplicaciones industriales y profesionales.
En Estados Unidos se utiliza la nomenclatura de la JEDEC ( Joint Electronic Devices Engineering Council) regulado por la EIA (Electronic Industries Association), que consta de un número, una letra y un número de serie (este último sin significado técnico). El significado de los números y letras es el siguiente:
1N - Diodo o rectificador
2N - Transistor o tiristor
3N - Transistor de Efecto de Campo FET o MOSFET
Los fabricantes japoneses utilizan el código regulado por la JIS (Japanese Industrial Standards), que consta de un número, dos letras y número de serie (este último sin ningún significado técnico). El número y letras tienen el siguiente significado:
Número:
0 - Fototransistor
1 - Diodo, rectificador o varicap
2 - Transistor, tiristor
3 - Semiconductor con dos puertas.
Primera letra:
S - Semiconductor
Segunda letra:
A - Transistor PNP de A.F.
B - Transistor PNP de B.F.
C - Transistor NPN de A.F.
D - Transistor NPN de B.F.
F - Tiristor de puerta P
G - Tiristor de puerta N
J - FET de canal P
K - FET de canal N
Pastillas, cápsulas y otras especies.......
El material semiconductor que contiene un transistor es del tamaño de un grano de arena o menor (así a ojo, jejejeej). Sería complicado soldar cables en algo tan pequeño, por lo que los fabricantes lo alojan en un encapsulado plástico o metálico. Actualmente podemos encontrar -literalmente- varias docenas de tamaños y tipos de encapsulado para transistores, no voy a describirlos todos porque necesitaría otro subforo (y ya serían dos, jejjejeje), pero sí los más comunes:
- El TO-92: Este transistor pequeño es muy utilizado para la amplificación de pequeñas señales.
- El TO-18: Es un poco más grande que el encapsulado TO-92, pero es metálico. En la carcasa hay un pequeño saliente que indica que la patilla más cercana es el emisor.
- El TO-39: tiene le mismo aspecto que es TO-18, pero es mas grande. Al igual que el anterior tiene una saliente que indica la cercanía del emisor, pero también tiene la patilla del colector pegado a la carcasa, para efectos de disipación de calor.
- El TO-126: Se utiliza mucho en aplicaciones de pequeña a mediana potencia. Puede o no utilizar disipador dependiendo de la aplicación en se este utilizando. Se fija al disipador por medio de un tornillo aislado en el centro del transistor. Se debe utilizar una mica aislante o una almohadilla térmica.
- El TO-220: Este encapsulado se utiliza en aplicaciones en que se deba de disipar potencia algo menor que con el encapsulado TO-3, y al igual que el TO-126 debe utilizar una mica aislante o almohadilla térmica si va a utilizar disipador, fijado por un tornillo debidamente aislado.
- El TO-3: este encapsulado se utiliza en transistores de gran potencia. Como se puede ver en el gráfico es de gran tamaño debido a que tiene que disipar bastante calor. Está fabricado de metal y es muy normal ponerle un "disipador" para liberar la energía que este genera en calor. Este disipador no tiene un contacto directo con el cuerpo del transistor, pues este estaría conectado directamente con el colector del transistor (ver siguiente párrafo). Para evitar el contacto se pone una mica o almohadilla térmica para que sirva de aislante y a la vez de buen conductor térmico. El disipador de fija al transistor con ayuda de tornillos adecuadamente aislados que se introducen el los orificios que estos tienen. En el transistor con encapsulado TO-3 el colector esta directamente conectado al cuerpo del mismo (carcasa), pudiendo verse que sólo tiene dos pines o patillas. Estas patillas no están en el centro del transistor sino que están ligeramente a un lado.
- El TO-3P viene a ser una versión más moderna del TO-3 y se usa al igual que el anterior en transistores de gran potencia, como se ve en la figura, la diferencia con respecto al TO-220 es que la zona metálica es del mismo tamaño que el transistor y no sólo una aleta que sale del mismo. Obligatorio también el uso de disipador con este encapsulado, debidamente aislado con una mica o almohadilla térmica.
Haciendo amig.....digooooooooo conexiones
Normalmente los transistores tienen tres patillas de conexión, éstas son:
- Base
- Colector
- Emisor
Si simplificamos la explicación teórica podemos decir que al conectar la base a una tensión o corriente se activará o desactivara (según esté polarizado) el transistor.
Las patillas de emisor y colector se conectan a tensiones positivas, negativas o masa, según el circuito.
Algunos transistores incluyen una cuarta patilla, esta patilla lleva a masa el encapsulado del transistor hacia el chasis del circuito.
Tipos de transistor
En primer lugar, podemos clasificar los transistores como dispositivos NPN o PNP. esta misteriosa abreviatura se refiere al "sandwich" o unión de los materiales semiconductores en el interior del transistor.
A menos que tengas visión de rayos-X, jamás vas a distinguir a simple vista un transistor NPN de un PNP. De todas formas, en los esquemas y en las hojas de características sí que se ven las diferencias, así que no hay que preocuparse. Cuando hacemos un proyecto propio podemos usar un tipo de transistor u otro según nuestras necesidades: el tipo de fuente de alimentación que tenemos, la polaridad de la alimentación, la dirección de la señal, etc......pero hay que dejar claro que no podemos usar indistintamente a voleo uno u otro tipo.
Si en un esquema dice que usemos un PNP no podemos sustituírlo por un NPN sin esperar ver humo en alguna parte del circuito.........
Por si no había bastantes cosas que memorizar......aparte de por su tipo de unión, los transistores se pueden clasificar por cómo se creó la unión de los semiconductores en el proceso de fabricación. Los dos principales tipos que vais a encontraros son los transistores bipolares y los FET's.
Las diferencias entre uno y otro:
a) Bipolares: Son los más comunes. Se aplica una pequeña corriente de entrada en la base del transistor. Esto hace que varíe la corriente que circula entre el colector y el emisor.
b) FET's: Estos transistores también tienen tres conexiones, pero éstas se llaman: Puerta (Gate), Fuente (Source) y Drenador (Drain) en vez de base, colector y emisor. Aplicando una tensión en la puerta controlamos la corriente que circula entre la fuente y el drenador.
Hay dos tipos de FET: de canal-N (similar al NPN bipolar) y de canal-P (similar al PNP bipolar).
Técnicamente los FET se dividen en dos subtipos: MOSFET y JFET, no me voy a extender más en este manual para explicar las diferencias entre uno y otro, pero siempre viene bien saber que existen.
Un consejo: cuando tratamos con transistores FET hay que tener cuidado ya que son sensibles a las descargas de electricidad estática. Por so es conveniente que mientras no los usemos los tengamos guardados en un envoltorio antiestático y no sacarlos hasta que vayamos a usarlos.
Salu2.